後藤 忠徳(京都大学大学院工学研究科 准教授) 2009年10月 9日
海底資源と電磁探査
近年、海底下に埋没している化石燃料や金属資源といった、海底資源に世界中からの注目が集まっている。このような海底資源は陸上に比べて未知数の部分が多いためにリスクが大きく、新 しい技術開発と多くの費用がかかると予想される。にもかかわらず海底資源が注目されている理由は、近年の世界経済(特に中国・インドなどの工業化が急速に進む国々)の成長に伴って、資 源需要が拡大しているためである。2008年に起きた世界的な経済危機の影響で原油価格や金属価格は下落したが、開発途上国の資源需要は今後も拡大し続けると予測されている。
海底資源の分布規模などを調査する際には、陸上の資源開発と同様に物理探査(=物理的現象を測定・分析して地下の状況を探査する技術)および試掘を実施する。この物理探査のうち、近 年は特に電磁波を用いた物理探査に注目が集まっている。その理由は海洋資源そのものの電気的特性に因っている。例えば石油・ガス・メタンハイドレートを含む堆積層の比抵抗(=単位断面積1 m2、長 さ1mの物質電気抵抗)は数十Ωm以上とされており、通常の海底堆積物や海底玄武岩の比抵抗(1~3Ωm程度)よりも高い。また海底鉱物資源のうち、硫化物鉱床は0.2Ωm程度の比抵抗であり、標 準の堆積物や海底玄武岩あるいは海水自体(0.3Ωm程度)よりも低い。従って、海底下の電気的構造を調査する物理探査を実施すれば、これらのターゲットの海底下の分布を明らかにすることができ、海 底資源発見や量的評価が容易となるため、最終的には海底資源の商業採掘を推し進めることへと繋がる。そこで本稿では電磁波を用いた海底探査について、その種別や動向を概説する。本稿の一部は後藤他(2009)に 寄っており、詳細な議論はそちらをご参照頂きたい。
海底で電磁場を測定して、海底下の比抵抗情報や比抵抗構造(断面図)を得る電磁探査を「海底電磁探査」と呼ぶが、大別すると自然の電磁気信号を用いる場合と、人 工的に発生させた電磁気信号を用いる場合がある(図1)。前者の代表例は海洋MT(Magnetotelluric)探査であり、複数の海底電位差磁力計(Ocean Bottom Electromagnetometer: OBEM)によって海底での自然の電磁場変動を測定し、地下情報を得る電磁探査の一つである(図1)。自然の地磁気変動が海底に作り出す誘導電場の大きさは、そ の変動周波数と地下の比抵抗に依存する。また低周波数の電磁場変動ほど地下深くまで浸透する。従って様々な測定周波数で電磁場変動を測定すれば、海底下浅部~深部の比抵抗構造の情報を得ることができる。海 洋MT探査はすでに油ガス調査に適用されており、例えばKey et al.(2006)では、メキシコ湾において海洋MT探査を実施し、石 油貯留層生成に関与する岩塩を海底下1~5kmに分布する高比抵抗体としてイメージしている。
!doctype>